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Abstract. For the effective operation of intelligent assistive systems
working in real-world human environments, it is important to be able to
recognise human activities and their intentions. In this paper we propose
a novel approach to activity recognition from visual data. Our approach
is based on qualitative and quantitative spatio-temporal features which
encode the interactions between human subjects and objects in an ef-
ficient manner. Unlike the state of the art, our approach uses signifi-
cantly fewer assumptions and does not require knowledge about object
types, their affordances, or the sub-level activities that high-level activi-
ties consist of. We perform an automatic feature selection process which
provides the most representative descriptions of the learnt activities. We
validated the method using these descriptions on the CAD-120 bench-
mark dataset, consisting of video sequences showing humans performing
daily real-world activities. The method is shown to outperform state of
the art benchmarks.

1 Introduction

One of the most challenging areas of research in the fields of computer vision
and pattern recognition is learning and understanding human activities from
observed visual data. The research question is, given a sequence of images with
one or more people performing various activities, is an intelligent system capable
of recognising the activities that are being performed? Despite its long research
history [1–4] finding a universal semantic representation for activity analysis
is still a difficult challenge due to the complexity of human activities and the
variability of how these activities can be performed, even by the same person.
Activity analysis is often investigated from a security domain perspective, as
automatic recognition of human behaviour in sensitive areas is a critical issue for
video surveillance [5–7]. Recently however, understanding daily human activities
has also become popular in moving towards smart environments and robotic
assistive living, where activity analysis is vital for effective operation.

In prior work, two distinct approaches have been adopted, those that first
detect objects and then examine the spatial and temporal relationships between
these objects [8], and those that examine patterns of image features directly
without first detecting the objects [9]. In the object-level based approaches,
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some use qualitative relations between pairs of objects (e.g. disjoint, partially-
overlapping), whilst others work directly with quantitative relations such as dis-
tances.

In this paper, we propose a novel method for activity recognition that com-
bines quantitative and qualitative representations, feature selection and a stan-
dard multi-class classifier. The method significantly improves on the state of the
art performance on the publicly available activity CAD-120 dataset from Cor-
nell.1. The prior state of the art on this dataset [10, 11] learns and recognises
human activities by modelling the sub-activities from which they are composed
and the affordances of the objects involved, as well as how these change over
time and relate to one another. Although the recognition of sub-activities and
object types/affordances may be important for some applications, we show that
it is possible to achieve a very high level of recognition performance of high level
activities without either of these.

The rest of the paper is organised as follows. Section 2 presents related work.
Section 3 describes our proposed framework in detail. In Section 4 the experi-
mental results are presented and discussed. The conclusions and future work are
presented in Section 5.

2 Related Work

Qualitative spatio-temporal relations are primarily successful as they capture key
spatial and temporal changes in visual data, and have become quite common in
representing activities in various approaches. These approaches are analysed in
this section.

In previous work [12–14] spatial relations based on the well established RCC
spatial calculus [15–17] were combined with temporal relations based on Allen’s
Interval Algebra [18] to produce a qualitative spatio-temporal graph that repre-
sents an activity. Although previous results have demonstrated the effectiveness
of this method, its lack of quantitative features that are not encapsulated by
the qualitative ones makes the method unable to distinguish between events
and activities where these quantitative features are important. In our experi-
ments we demonstrate the importance of using quantitative features together
with qualitative features.

The RCC spatial calculus together with Allen’s Interval Algebra has also been
used in [19], but in that work pre-defined knowledge of the object categories was
also exploited and together with the spatio-temporal features and using Inductive
Logic Programming (ILP) the developed system was able to learn and recognise
observed human activities. Although the system demonstrated successful results
and its ability to avoid over-fitting of the training dataset was a key strength,
its reliance of prior knowledge about the categories of the objects in conjunction
with its strict classification approach due to ILP, causes performance issues when
these are missing.

1CAD-120: http://pr.cs.cornell.edu/humanactivities/data.php
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A hierarchical approach using variable length Markov models and taking as
observations the contour of a human body in terms of control points has been
developed to learn and recognise human activities, and has been evaluated in
exercise activities that require no object interactions [20, 21]. Given the nature
of the feature vector which takes into account the contour of the object rather
than actual spatial relations between spatial interest points, it is questionable
whether it will be able to deal with activities that involve object interactions.

Other approaches [22, 23] have used interest point detectors, extracted a 3D
cuboid at each interest point, computed descriptors for each of the cuboids and
then clustered similar descriptors together hence forming a feature descriptor
codebook similar to the traditional bag-of-words approach. An extension to this
method is using a probabilistic approach that combines prior domain knowledge
to model each activity as a distribution over the codewords and each video as a
distribution over the activities [24]. Although the advantage of these approaches
that use image descriptors is that they do not require skeleton or object tracks
to describe the activity observed, they are unable to take into account spatio-
temporal relations between the different relevant entities in the scene, which are
important elements when learning and recognising human activities [25, 17]. To
address this issue, the concept of a “spatio-temporal phrase” that is defined as
a combination of local words in a certain spatial and temporal structure, includ-
ing their order and relative positions is introduced [26]. This is a very similar
approach to the graphical representation described before [12–14], however, the
spatio-temporal phrase still does not include qualitative spatial relations and
also the temporal relations are much fewer than the Allen’s Interval Algebra
used in the graphs method.

An alternative approach is using convolutional deep learning methods to learn
templates of the patterns of the activities and then be able to recall them [27–
29]. Although deep learning methods have demonstrated impressive results in
visual pattern matching, they require large training datasets and training is
very computationally expensive. Furthermore, like the bag-of-words approaches
for activity recognition, deep learning methods have to-date operated at the im-
age level and do not consider rich spatio-temporal relations among the relevant
entities in the scene. Other approaches [30, 31] make use of low-level optical flow
input and build high-level spatio-temporal representations of the activity. Ryoo
[30] extracts feature points from a video and describes the scene by modelling
spatio-temporal relations between these feature points. Similarly, Brendel [31]
builds on representing activities as spatio-temporal graphs generated from pixel
intensities and motion properties in the video. These approaches show promis-
ing results but suffer from image-level distortions, such as motion-blur, lighting
changed etc., and do not capture high-level scene reasoning.

In our approach, we make use of the CAD-120 dataset. Much work has
been done using this dataset. Benchmark setting approaches developed by Kop-
pula [10, 11], Rybok [32] have focused on modelling activities using generalized
description of objects. Koppula [10, 11] made use of object affordances, i.e. the
purpose of an object, in order to build stronger models of activities, supporting
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the hypothesis that the use of object affordances instead of specific object de-
scriptions is more beneficial since it is more important to know what an object
does rather than what an object is. Rybok [32], similarly, generalizes object mod-
elling by representing regions in a scene where objects are interacting through de-
tection of salient object features rather than complete objects themselves. These
approaches, however, still heavily model objects in order to recognize activities.
In our work, we give equal weight to modelling all interactions amongst elements
(all skeleton joints and objects) in a scene thus removing heavily weighted bias
towards object modelling alone.

3 Framework

We propose that in order for an intelligent system to effectively recognise ob-
served human activities, we encode both the qualitative and quantitative spatio-
temporal relations of the relevant entities in the scene. For this we research and
develop a method that allows an intelligent system to learn and recognise high-
level activities by selecting the most important and discriminative features from
a set of feature templates that were designed based on qualitative and quanti-
tative spatio-temporal feature representations (QQSTR) of the activities. The
resulting selected features are then used to train a multi-class support-vector
machine (SVM) for future prediction. These steps are shown in Figure 1.

Feature template
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Spatial

Quantitative
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Features SelectionFeatures Selection Multi-Class
SVM
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Fig. 1. Flowchart showing the high-level steps of the QQSTR

Before the detailed explanation of the model is given, it is useful to briefly
describe the key terms in the QQSTR: spatial, temporal, qualitative and quan-
titative.

Spatial: These features describe properties and relations between objects that
exist in space. Examples of spatial features are poses of objects, relative poses
of objects with respect to other objects, absolute and relative direction of
motion, etc.
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Temporal: These features describe properties and relations of the objects or
activities themselves in the time domain. Allen’s interval algebra is an ex-
ample of temporal relation features between two events. Other examples of
temporal features are (a) the time an activity starts and its duration, (b)
the time before a car runs out of fuel, etc.

Qualitative: The term qualitative is defined as “relating to, measuring, or mea-
sured by the quality of something rather than its quantity”2. For example a
qualitative spatial feature is that two objects are partially overlapping each
other without specifying the proportion of overlap. A qualitative temporal
feature example is that an activity starts and finishes before another activ-
ity starts. Both, RCC and Allen’s interval algebra are qualitative relational
frameworks.

Quantitative: In contrast to qualitative, the term quantitative is defined as
“relating to, measuring, or measured by the quantity of something rather
than its quality”2. An example of a spatial quantitative feature is saying that
two objects overlap each other by 30%; an example of a temporal quantitative
feature is saying that an activity finishes 5 minutes before another activity
starts.

Our feature set F consists of three components, namely qualitative spatial,
quantitative spatial and qualitative temporal components. All three components
comprise of histograms and statistical measures both of which are noise resilient.
We have chosen not to include a quantitative temporal component as we found
that the qualitative temporal components encodes sufficient temporal informa-
tion in the domain under consideration and including quantitative component
would result is unnecessary additional complexity to the feature space in F.

F = 〈F1, F2, F3〉 (1)

In equation 1, F1 is the set of qualitative spatial features, F2 is the set of
qualitative temporal features and F3 is the set of quantitative spatial features.
The complete feature set F then undergoes minimum-redundancy maximum-
relevancy (MRMR) [33] feature selection in order to identify features from each
set F1, F2 and F3 that have a significant contribution. This selection step pro-
vides the minimal and most discriminative representation of an activity.

3.1 Qualitative Spatial Representations (F1)

The qualitative spatial representation (QSR) used is based on the well-established
Region Connection Calculus-5 (RCC-5) [16], which is a binary mereological cal-
culus containing 5 relations. We use a still coarser representation which we refer
to as RCC-3. It contains the relations DR (discrete), PO (partial overlap) and
PiP {the union of the RCC-5 relations PPi, PP, EQ} (Part, Part inverse and
equality). These form a Jointly Exhaustive and Pairwise Disjoint (JEPD) set of
relations and, as with RCC-5, RCC-3 holds between pairs of entities (tracked

2http://www.oxforddictionaries.com
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objects and human body parts) in n-dimensional Cartesian space. All three rela-
tions are symmetric, though in our work we arrange the use of PiP such that the
first argument is always a part of the second (or equal to it, however in practice
equals rarely occurs). This is effectively the representation used in [13] and for
representational convenience we use D and P rather than DR and PiP in the
rest of the paper. These RCC-3 relations are graphically shown in Figure 2 and
they are denoted as R = {D, PO, P}.

D PO P

Fig. 2. Region Connection Calculus-3 showing the three distinct relations between a
pair of objects

We first compute these pairwise RCC relations from the tracks of the entities,
producing sequences of RCC relations for each pairwise combination of entities.
A low-pass filter is then applied across the sequences of relations to suppress
any jitter caused due to objects and skeleton detection error. An important
aspect in QSR activity recognition is to model the relation changes that occur
between entities, as these represent the discriminative stages of an activity. In
related work [19, 13, 14], this is achieved by aggregating repeated consecutive
occurrences of a relation for each pairwise combination of entities. In other words,
by parsing individually every sequence row Sei,ej ∈ S which are the RCC chains
(sequences) between any two entities ei and ej , each chain is suppressed while
Sei,ej ,t = Sei,ej ,t−1. By only locally focussing on how the RCC relations of a
specific pair of objects is evolving, it limits the representative strength of the
spatial feature, as it ignores how the changes in Sei,ej are affecting the changes
in the spatial relations of the rest of the entities; i.e. local segmentation ignores
the holistic picture.

We propose an alternative approach to suppress the spatial relation chains
in S when only all chains are the same as the ones before. Again in simple
terms, instead of looking individually at every Sei,ej which are the rows of S,
we suppress the RCC relations while St = St−1, i.e. if there is a change between
column t and t − 1 of S. An example of local and propagated segmentation is
illustrated in Figure 3 and the benefits of propagated segmentation over local
segmentation are demonstrated in the experimental results section. Finally, we
compute the number of occurrences of sub-sequences of length 1, 2, 3 and 4 in
the propagated segmented RCC sequence, as these sub-sequences represent the
minimal blocks that describe an activity in terms of qualitative spatial relations.
The histogram of these sub-sequences is our qualitative spatial feature F1.

Formally this procedure is described as follows. Let E be the set of entities
in the scene. Then at each frame, t, we compute between entities ei, ej ∈ E
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Fig. 3. Example showing the expressive power of propagated segmentation over local
segmentation in two activities (stacking and unstacking objects)

(i 6= j), the RCC relation Rei,ej ,t, from the Cartesian positions of these two
entities at this frame. This produces a m × n matrix S of r relations for all m
possible pairwise combinations of the entities for each one of the n frames in
the video. Propagated segmentation on S is computed by aggregating relation
changes that occur in any of the pairwise relations sequences S[t:t+1], produc-
ing a new matrix S′. Then, we form a histogram of all possible RCC relation
changes with length l ∈ [1 : 4] that occur in the whole video represented by
S′ for all m pairwise combination of entities. The total number of these his-
togram bins is m ×

∑4
l=1 len(R)l, where as previously described len(R) = 3.

For example, consider the propagated segmentation S′ for stacking objects ac-
tivity shown in Figure 3. The bins of the histogram for object 1 and 2 would
be 〈D;D-PO; . . . ;D-PO-PO-D〉1,2 with counts 〈2; 1; . . . ; 1〉, and all other pos-
sible RCC combinations filled in with zeroes so that the length of the histogram
feature has the same length for all activities. This is repeated for the remaining
pairwise combinations (1, 3 and 2, 3) and the resulting histograms for each pair-
wise combination are joined together to form the complete feature representing
the activity video. This becomes the qualitative spatial representation feature
set F1, with length of R120×m.

3.2 Qualitative Temporal Representations (F2)

Spatial changes in F1 alone do not capture the notion of time in an activity which,
for some activities, are maybe important. For example, there might be similarity
of the spatial relations between the talking on the phone and biting an apple
activities; capturing the time dependencies between spatial changes can help in
discerning such situations. One commonly used method for describing temporal
relations is Allen’s Interval Algebra [18]. Since Allen’s temporal relations do not
encode quantitative duration relations, we expand the meets relation, by adding
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Fig. 4. Ratios computed between relative lengths of two consecutive different spatial
relations ei and ej , then discretised into one of three clusters representing short, equal
or long durations.

a qualitative measure of relative duration between two consecutive different spa-
tial relations. More formally, from the non-segmented spatial relations sequences
of S we calculate the relative duration ratio d:

d =
len(ej)

len(ei)
, ei meets ej (2)

To obtain a qualitative measure of the relative duration, the quantitative
ratios are clustered together using k-means. In practice, we found that discreti-
sation of the continuous space of ratio values can be sufficiently captured with
three clusters (k = 3). As illustrated in Figure 4, these three clusters give the
notion of duration ratios as either being short, equal or long3. Once the tempo-
ral relations are in a qualitative form it is possible to compute their histogram
which is our qualitative temporal feature F2, with a length of R9×m. The total
number of features in F2 is given by m × (len(R)2 − len(R)) × k where m is
the number of all pairwise combination of objects, len(R)2 − len(R) denotes the
total number of pairwise combinations of spatial relation changes with no repe-
tition. For example for objects 1 and 3 in S of activity stacking objects shown in
Figure 3, the bin 〈(D-PO)short; (D-PO)equal; . . . ; (PO-D)long〉1,3 provides the
counts 〈1; 0; . . . ; 1〉.

3.3 Quantitative Spatial Representations (F3)

Qualitative spatial representations successfully abstract a good representation
of a video scene through capturing interactions. However, due to the coarse rep-
resentation of space and time, it is often not possible to discern similar looking
activities that are performed at a different scale or speed. Quantitative spatial
representations, on the other hand, are able to encode such finer motions in an
activity as seen in previous work [35]. In our approach we make use of various
quantitative spatial representations to aid our model in the recognition problem.

3Note that this is similar to the INDU calculus [34] which extends the interval
calculus by discretising whether intervals in a before, meets or overlaps relationship
are shorter, equal or longer than each other.
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Euclidean distances: We compute the Euclidean distances between the cen-
troid of the bounding boxes of each pair of elements in the scene. An element
could be any of the following skeleton parts: head, hands, torso, shoulders,
hips, and any of the objects in the scene. Lower body parts are not used
due to their high rate of occlusion. For a compact and generic representation
we compute the descriptive statistics of this distances distribution, namely
we compute the mean (µ), standard deviation (σ), kurtosis (κ) and skew-
ness (γ). We use these statistical measures as quantitative spatial features.

Relative direction of motion: A problem with some qualitative spatial rela-
tions is that in some cases they are unable to distinguish mirror activities, e.g.
pushing and pulling. To resolve this issue we calculate the relative direction
of motion between two objects, i.e. whether two objects are approaching or
departing from each other. We calculate this for every possible pair of objects
using their timed minimum and maximum Euclidean distances. By knowing
how the relative direction of the motions change for pairs of objects in the
scene it is possible to distinguish between mirror activities.

The descriptive statistics of the Euclidean distances combined with the rela-
tive direction of motion of the entities, form the quantitative spatial representa-
tion F3. The number of total features in F3 is given by R5×m where m denotes
all pairwise combinations of entities and 5 represents the number of statistical
metrics of Euclidean distances plus relative directions of motion.

3.4 Feature Selection and Learning

The feature template F is the most generic representation of an activity. How-
ever, the importance of each of the features in it is determined by the nature of
the activities. We employ a feature selection step that automatically identifies
from F the feature set F

′
that is more discriminating for activity classes c. We

apply this by using the Minimum-Redundancy Maximum-Relevance (MRMR)
feature selection method [33], which is based on mutual information between
two random variables, α and β as shown in Equation 3. Specifically, MRMR
is based on two criteria, namely maximum-relevance and minimum-redundancy,
which are described below.

I(α;β) = H(α) +H(β)−H(α, β) (3)

Maximum-Relevance: This criterion approximates Max-DependencyD(F, c),
by searching for features using the mean of all mutual information values be-
tween feature xi and classes c, that satisfy equation 4.

max D(F
′
, c), D =

1

| F ′ |
∑

xi∈F ′

I(xi; c). (4)

Minimum-Redundancy: If any two features, xi and xj , have a high depen-

dency between them, one of them is redundant in the feature set, F
′
, and
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is therefore removed while still preserving the discriminative-class power of
the feature set. Therefore, by using the Minimal-Redundancy criterion, as
shown in Equation 5, mutually exclusive features are chosen.

min R(F
′
), R =

1

| F ′ |2
∑

xi,xj∈F ′

I(xi;xj). (5)

By defining the operator φ(D,R) to combine these two criteria, as shown in
Equation 6, the minimal most discriminative feature set, F

′
, for a given set of

activities classes is obtained.

max φ(D,R), φ = D −R (6)

We use the feature set F
′

to train a multi-class SVM [36] to recognise the
high-level activities using a polynomial kernel of degree d = 2 and γ = 0.75.

4 Results and Discussion

We evaluate our framework on the Cornell activity dataset (CAD-120)4 which we
describe in section 4.1. We then describe our experimental setup and evaluation
method in section 4.2. In section 4.3 we compare our approach against a state
of the art benchmark. Section 4.4 provides an in depth analysis and discussion
of the strengths of our approach.

4.1 Description of the Benchmark Dataset

CAD-120 comprises of 120 RGB-D video sequences of four human subjects per-
forming daily living activities which are recorded using a Microsoft Kinect cam-
era. Out of these four subjects two are male and two are female; three are right-
handed and one is left-handed. Each video is labelled with a single high-level
activity name: making cereal, taking medicine, stacking objects, unstacking ob-
jects, microwaving food, picking objects, cleaning objects, taking food, arranging
objects and having a meal. The dataset provides skeleton tracks of people in the
scene, as well as auto and ground truth tracks of the objects present in each one
of the videos. Figure 5 shows some sample images of the dataset.

4.2 Experimental Procedure

For validation and comparison, we follow the same evaluation procedure as the
one presented in the current state of the art [10]. We adopt a 4-fold cross val-
idation approach where we train on three subjects and test on the fourth new
subject. In addition, on the training set we perform a 3-fold cross validation for
the feature selection process where we train on two subjects and we use the third
subject for feature selection with the method described in Section 3.4. We then

4http://pr.cs.cornell.edu/humanactivities/data.php
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Fig. 5. CAD-120 dataset sample screen shots4

combine the extracted features of each of the three folds together and remove
repetitions to form our final most-discriminative features set.

We then use the new feature set to compute the results of the main testing
fold which we take an average across the four folds. We report the micro accuracy,
macro precision and macro recall for the activity recognition. Micro accuracy is
the average of the percentages of correctly classified labels across the four folds.
Macro precision and recall are the averages of precision and recall respectively
for all classes.

4.3 Activity Recognition Results

Table 1 shows the performance of our approach on high-level activity recognition
of the CAD-120 dataset. It can be observed that we achieve an accuracy of 95.2%,
precision of 95.2% and recall of 95.0%. This is a significant improvement of 12.1%,
8.2% and 15.0% in terms of accuracy, precision and recall when ground-truth
temporal segmentation of sub-activities is not known, as well as an improvement
of 1.7%, 0.2% and 1.7% when it is known. The assumption of knowing the
temporal segmentation of the sub-level activities is not required by our method,
but it is needed by the benchmark method. These results demonstrate that
our approach efficiently and effectively captures the interactions between the
human subjects and the objects without needing any prior knowledge about the
types and the affordances of the objects in the scene or knowledge of sub-level
activities. Figure 6 presents the confusion matrix obtained with ground truth
bounding boxes. From the strong diagonal it is evident that there is nearly no
confusion in discriminating different high-level activities.

The results presented so far are obtained using ground-truth object tracks.
We evaluate our method on more realistic scenarios by using the noisy automatic
object tracks provided by the CAD-120 dataset. We compare our results with [10,
32]. Rybok et al. requires no object tracks as their method is based on saliency
and optical features. Table 1 shows that our method is robust and achieves
comparable results to the other two methods. Specifically, it achieves an accuracy
of 75.8%, which is only 2.4% lower than the highest performance by Rybok et
al. Results also show marginal increase of 0.8% over results of Koppula et al.

Figure 7 illustrates the confusion matrix for our results using automated
object tracks. We can observe that most activities obtain a high accuracy while
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Table 1. Performance measurements with or without ground-truth temporal segmen-
tation based on accuracy, precision and recall

Method Accuracy Precision Recall

assuming ground-truth temporal segmentation

Koppula et al. [11] 84.7 ± 2.4 85.3 ± 2.0 84.2 ± 2.5

Koppula, Saxena [10] 93.5 ± 3.0 95.0 ± 2.3 93.3 ± 3.1

assuming no ground-truth temporal segmentation

Koppula et al. [11] 80.6 ± 1.1 81.8 ± 2.2 80.0 ± 1.2

Koppula, Saxena [10] 83.1 ± 3.0 87.0 ± 3.6 82.7 ± 3.1

QQSTR-gt-tracks 95.2± 2.0 95.2± 1.6 95.0± 1.8
assuming no ground-truth temporal segmentation

and no ground-truth object bounding boxes

Koppula et al. [11] 75.0 ± 4.5 75.8 ± 4.4 74.2 ± 4.6

Rybok et al. [32] 78.2 - -

QQSTR-auto-tracks 75.8 ± 6.8 77.9± 11.0 75.4± 9.1

there is confusion between the cleaning objects and taking food activities. We
suspect that this confusion between these two activities occurs due to potentially
high level of noise in the object tracks. This suspicion is supported by Figure 6
which shows that when the tracks are noiseless a high degree of separation is
achieved.

4.4 Discriminative strength of features types

We firstly investigate the strength of QQSRT (F ) versus using individual and
pairwise combinations of the different feature types. Figure 8 shows the accura-
cies for ground-truth and automatic tracks for F and all the different combina-
tions of F1, F2 and F3. It can be seen that F outperforms all other combinations.
However, there are other interesting observations. To begin with, qualitative spa-
tial representation (F1) and qualitative temporal representation (F2) seem to be
robust to noisy automatic tracks. On the other hand, quantitative spatial repre-
sentation F3, although more prone to noisy tracks, achieves a higher performance
in the case of smooth tracks. Furthermore it can be seen that F1 and F3 when
combined together have a higher discriminating ability than when combined with
F2. This is confirmed by Figure 9 which shows post feature selection performance
contributions of F1, F2 and F3. It can be seen that the contribution of F2 in F is
much lower than those of F1 and F3. Despite the fact that F2 is contributing less,
it is still an important component of the overall feature set since its inclusion
achieves the highest performance.

We next evaluate the benefit of propagated segmentation over local segmen-
tation as described in the methodology section. Figures 10 and 11 show the
confusion matrices obtained when using local and propagated segmentation re-
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Fig. 6. Confusion matrix with ground-
truth object tracks
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Fig. 7. Confusion matrix with automated
object tracks
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F1 38%

F2 6%

F3 56%

Fig. 9. Ratio of the number of
each feature type over the total
number of selected features

spectively. To objectively investigate the effect of propagated segmentation on
the qualitative spatial relations F1, we perform experimentation as before using
F1 alone. It can be seen that implementing the global propagation eliminates
confusion between the mirrored activities of stacking and unstacking. These re-
sults validate our hypothesis that by taking into account the holistic picture and
looking at how the spatial relations change at the global level yields much better
results than a narrow focus on individual relational changes.

Lastly, we evaluate the performance with and without employing feature
selection. Table 2 shows these results. It can be seen that feature selection plays
a significant role in achieving high performance of 95.2%.

Table 2. Performance measurements with and without feature selection

Accuracy Precision Recall

QQSTR without feature selection 79.8 ± 1.5 82.45 ± 7.4 79.17 ± 7.8

QQSTR with feature selection 95.2 ± 2.0 95.2 ± 1.6 95.0 ± 1.8
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Fig. 10. High confusion between stacking
and unstacking activities, highlighted in
red, is evident when using local segmen-
tation
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Fig. 11. There is no confusion between
stacking and unstacking activities, high-
lighted in red, when using propagated seg-
mentation

5 Conclusions and Future Work

In this paper we proposed a novel method of learning and recognising complex
human high-level activities from video sequences. The method is based on qual-
itative and quantitative spatio-temporal features that capture the person-object
interactions in the observed scene in a generic and effective manner. From these
features we automatically selected the most discriminative ones and trained a
multi-class SVM. We showed that the task of finding the most discriminative
features from the original set is an important step. Unlike state of the art meth-
ods in activity recognition our method makes very few assumptions and does
not need knowledge of object types, their affordances or sub-level activities that
compose the high-level activity. We validated our method with extensive exper-
iments over a challenging dataset, for which we significantly outperformed the
state of the art approach. Specifically, we achieved an accuracy of 95.2%, preci-
sion of 95.2% and recall of 95.0%. This is a significant improvement of 12.1%,
8.2% and 15.0% in terms of accuracy, precision and recall when sub-level ac-
tivities are not used, as well as an improvement of 1.7%, 0.2% and 1.7% when
they are used by the state of the art approach; this assumption of knowing the
temporal segmentation of the sub-level activities is not required by our method.

Although in this work our focus was in the recognition of high-level activities,
recognition of the sub-level activities is also important. We plan to extend our
work to recognise these sub-level activities using a top-down approach, where
the recognition of the high-level activity helps to infer the sub-level ones. This is
in contrast to a bottom-up approach used by the current state of the art where
high-level activities are inferred from sub-level ones.

Acknowledgement. The financial support of RACE (FP7-ICT-287752) and
STRANDS (FP7-ICT-600623) projects is gratefully acknowledged.



QQSTRs in Daily Living Activity Recognition 15

References

1. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine Recognition of
Human Activities: A Survey. IEEE Transactions on Circuits and Systems for Video
Technology 18 (2008) 1473–1488

2. Poppe, R.: A survey on vision-based human action recognition. Image and Vision
Computing 28 (2010) 976–990

3. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for ac-
tion representation, segmentation and recognition. Computer Vision and Image
Understanding 115 (2011) 224–241

4. Xu, X., Tang, J., Zhang, X., Liu, X., Zhang, H., Qiu, Y.: Exploring techniques for
vision based human activity recognition: methods, systems, and evaluation. Sensors
(Basel, Switzerland) 13 (2013) 1635–50

5. Collins, R., Lipton, A., Kanade, T.: Introduction to the special section on video
surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22
(2000) 745–746

6. Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis
from surveillance videos: a survey. Artificial Intelligence Review (2012) 1–19

7. Ko, T.: A survey on behavior analysis in video surveillance for homeland security
applications. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop,
IEEE (2008) 1–8

8. Chen, J., Cohn, A.G., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative
spatial representations. The Knowledge Engineering Review FirstView (2013) 1–
31

9. Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64 (2005) 107–123

10. Koppula, H., Saxena, A.: Learning Spatio-Temporal Structure from RGB-D Videos
for Human Activity Detection and Anticipation. In: Proc. of the International
Conference on Machine Learning (ICML). (2013)

11. Koppula, H., Gupta, R., Saxena, A.: Learning Human Activities and Object Affor-
dances from RGB-D Videos. International Journal of Robotics Research 32 (2013)

12. Sridhar, M., Cohn, A. G., Hogg, D. C.: Learning Functional Object-Categories
from a Relational Spatio-Temporal Representation. In: European Conference on
Artificial Intelligence. (2008)

13. Sridhar, M., Cohn, A. G., Hogg, D. C.: Unsupervised Learning of Event Classes
from Video. In: AAAI. (2010)

14. Sridhar, M., Cohn, A. G., Hogg, D. C.: Discovering an Event Taxonomy from Video
using Qualitative Spatio-temporal Graphs. In: European Conference on Artificial
Intelligence. (2010)

15. Randell, D., Zhan, C., Cohn, A. G.: A Spatial Logic based on Regions and Con-
nection. In: Third Int. Conf. on Knowledge Representation and Reasoning. (1992)

16. Cohn, A. G., Hazarika, S.: Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae 46 (2001) 1–29

17. Cohn, A. G., Renz, J.: Qualitative Spatial Representation and Reasoning. In van
Harmelen, F., Lifschitz, V., Porter, B., eds.: Handbook of Knowledge Representa-
tion. Elsevier B.V. (2008) 551–596

18. Allen, J.: Maintaining knowledge about temporal intervals. Communications of
the ACM (1983) 832–843

19. Dubba, K., Cohn, A. G., Hogg, D. C.: Event Model Learning from Complex Videos
using ILP. In: European Conference on Artificial Intelligence. (2010) 93–98



16 Jawad Tayyub et al.

20. Galata, A., Johnson, N., Hogg, D.: Learning Behaviour Models of Human Activi-
ties. In: British Machine Vision Conference. (1999)

21. Galata, A., Johnson, N., Hogg, D.: Learning Variable-Length Markov Models of
Behavior. Computer Vision and Image Understanding 81 (2001) 398–413

22. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse
Spatio-Temporal Features. In: 2005 IEEE International Workshop on Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance, IEEE (2005) 65–72

23. Xia, L., Aggarwal, J.: Spatio-temporal Depth Cuboid Similarity Feature for Ac-
tivity Recognition Using Depth Camera. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE (2013) 2834–2841

24. Zhang, H., Parker, L.: 4-dimensional local spatio-temporal features for human
activity recognition. In: 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE (2011) 2044–2049

25. Forbus, K.: Qualitative Modeling. In van Harmelen, F., Lifschitz, V., Porter, B.,
eds.: Handbook of Knowledge Representation. Elsevier B.V. (2008) 361–393

26. Zhang, Y., Liu, X., Chang, M.C., Ge, W., Chen, T.: Spatio-Temporal Phrases for
Activity Recognition. In: European Conf. on Computer Vision (ECCV). (2012)

27. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional Learning of Spatio-
temporal Features. In: European Conference on Computer Vision (ECCV). (2010)
140–153

28. Chen, B., Ting, J.A., Marlin, B., de Freitas, N.: Deep Learning of Invariant Spatio-
Temporal Features from Video. In: NIPS 2010 Deep Learning and Unsupervised
Feature Learning Workshop. (2010)

29. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis. In:
CVPR 2011, IEEE (2011) 3361–3368

30. Ryoo, M.S., Aggarwal, J.: Spatio-temporal relationship match: Video structure
comparison for recognition of complex human activities. In: Computer Vision, 2009
IEEE 12th International Conference on. (2009) 1593–1600

31. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities.
In: Proceedings of the 2011 International Conference on Computer Vision. ICCV
’11, IEEE Computer Society (2011)

32. Rybok, L., Schauerte, B., Al-Halah, Z., Stiefelhagen, R.: ”Important Stuff, Ev-
erywhere!” Activity Recognition with Salient Proto-Objects as Context. In: IEEE
Winter Conference on Applications of Computer Vision (WACV). (2014)

33. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: cri-
teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence 27 (2005) 1226–1238

34. Pujari, A., Vijaya Kumari, G., Sattar, A.: INDu: An interval & duration network.
In: Advanced Topics in Artificial Intelligence. Volume 1747 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (1999) 291–303

35. Behera, A., Hogg, D. C., Cohn, A. G.: Egocentric activity monitoring and recovery.
In: The 11th Asian Conference on Computer Vision. (2012) 519–532

36. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2 (2011) 27:1–27:27


